Here are my contributions to Prime curios
11 : The smallest prime which when sandwiched between a two-digit repdigit gives a multiple of 11. In other words 1111, 2112, 3113, 4114, 5115, 6116, 7117, 8118, and 9119 are multiples of 11.
23 : 23 = -22 + 33
43 : 43 = 42 + 33
97 : 97 and its double (194) and triple (291) use the same number of characters (five) when expressed in Roman numerals: XCVII, CXCIV, and CCXCI.
109 : The smallest non-trivial prime that is the sum of the reversal of two consecutive primes (109 = R(47) + R(53) = 74 + 35).
239 : 1+3+5+7+....+237+239 = 239+241+243+...+335+337. Note that 239 and 337 are both primes.
251 : The 251st Fibonacci number (F251) has a sum of digits equal to 251. The two smaller prime numbers with this property are 5 and 31
269 : The 269th day of a non-leap year is 26 September (26/9)
617 : 617 = 1!2 + 2!2 + 3!2 + 4!2
991 : 9912 = 982081 and 982 + 0 + 8 + 1 = 991.
1009 : The sum of digits of 1009 is a substring of itself and of its square.
1201 12012 = 601+602+603...+1799+1800+1801. With 1201, 601, and 1801 each being prime
1669 : 16692 = 2785561, and 278 * (5/5) * 6 + 1 = 1669
1669 : The smallest prime that appears in the same position of its own value when the Roman numerals (from 1 to 3999) are placed in lexicographic order. The other primes with this property are 3623 and 3631
4027 40275 = 33015 + 31695 + 30375 + 24115 + 14815 + 8595 + 5695. Note that all base numbers and exponents are prime. Found by Takao Nakamura.
4561 : The digits of 4561 (abcd) produce a distinct nine-digit product in the following expression: (a+b+c+d)(ab+cd)(a+bcd)(abc+d)
6833 : 68332 = 46689889, and 4 * 6 + 6898 - 89 = 6833.
8209 : 82093 = 553185473329, and 52 + 52 + 32 + 12 + 852 + 42 + 72 + 32 + 32 + 292 = 8209.
12637 : The smallest prime such that the differences between the 5 consecutive primes starting with it are (4,6,6,6): 12637, 12641, 12647, 12653, 12659.
15017 : 15017 = 1!2+2!2+3!2+4!2+5!2
17783 : The smallest prime which is the sum of two, three, four, and five consecutive composite numbers:
17783 = 8891 + 8892 = 5926 + 5928 + 5929 = 4444 + 4445 + 4446 + 4448 =
3554 + 3555 + 3556 + 3558 + 3560.
28567 : is the smallest prime, which is a Fibonacci number (F(23)prime) and an anagram of a triangular number (67528 = T(367)prime).
41579 : is the only prime p, such that p and p expressed in some base < 10, taken together are pandigital. 41579 = 63028 in base 9.
38981039 : The smallest number whose square begins and ends with the same seven digits: 389810392 = 1519521401519521.
989450477 : The log730 (989450477) starts out equal to the first dozen digits of pi.
298999999999 : The smallest prime with sum of digits equal to 100.
lunes, 25 de octubre de 2010
sábado, 2 de octubre de 2010
Primes in arithmetic progression, such one is a permutation of the other
Look at 1487, 4817 and 8147.
They are three primes with the same digits, one is a permutation of the other, and are in arithmetic progression with a common difference of 3300.
Another examples:
Common difference, first term, second term and last term
They are three primes with the same digits, one is a permutation of the other, and are in arithmetic progression with a common difference of 3300.
Another examples:
Common difference, first term, second term and last term
3330 1487 4817 8147
3330 2969 6299 9629
3330 11483 14813 18143
30222 11497 41719 71941
504 12713 13217 13721
4500 12739 17239 21739
4500 12757 17257 21757
4500 12799 17299 21799
33300 14821 48121 81421
16650 14831 31481 48131
32292 14897 47189 79481
33300 18503 51803 85103
33300 18593 51893 85193
15948 19543 35491 51439
450 20161 20611 21061
4950 20353 25303 30253 35203*
4950 20359 25309 30259 35209*
3330 20747 24077 27407
4500 23887 28387 32887
27720 25087 52807 80527
33480 25793 59273 92753
13608 25913 39521 53129
33300 25981 59281 92581
4950 26317 31267 36217
33030 26597 59627 92657
450 28933 29383 29833
33300 29669 62969 96269
3330 31489 34819 38149
8352 31489 39841 48193
30330 32969 63299 93629
4500 34961 39461 43961
4950 35407 40357 45307
4050 35491 39541 43591
17946 35671 53617 71563
14076 37561 51637 65713
4950 49547 54497 59447
450 55603 56053 56503
3330 60373 63703 67033 70363*
4950 60757 65707 70657 75607*
3330 61487 64817 68147
3330 62597 65927 69257
4950 62773 67723 72673 77623*
450 63499 63949 64399
450 67829 68279 68729
9450 68713 78163 87613
2772 71947 74719 77491
5004 73589 78593 83597
450 76717 77167 77617
4950 76819 81769 86719
5238 78941 84179 89417
8910 80191 89101 98011
4950 83987 88937 93887 98837 (all primes)
4950 88937 93887 98837
4500 89387 93887 98387
450 92381 92831 93281
3330 2969 6299 9629
3330 11483 14813 18143
30222 11497 41719 71941
504 12713 13217 13721
4500 12739 17239 21739
4500 12757 17257 21757
4500 12799 17299 21799
33300 14821 48121 81421
16650 14831 31481 48131
32292 14897 47189 79481
33300 18503 51803 85103
33300 18593 51893 85193
15948 19543 35491 51439
450 20161 20611 21061
4950 20353 25303 30253 35203*
4950 20359 25309 30259 35209*
3330 20747 24077 27407
4500 23887 28387 32887
27720 25087 52807 80527
33480 25793 59273 92753
13608 25913 39521 53129
33300 25981 59281 92581
4950 26317 31267 36217
33030 26597 59627 92657
450 28933 29383 29833
33300 29669 62969 96269
3330 31489 34819 38149
8352 31489 39841 48193
30330 32969 63299 93629
4500 34961 39461 43961
4950 35407 40357 45307
4050 35491 39541 43591
17946 35671 53617 71563
14076 37561 51637 65713
4950 49547 54497 59447
450 55603 56053 56503
3330 60373 63703 67033 70363*
4950 60757 65707 70657 75607*
3330 61487 64817 68147
3330 62597 65927 69257
4950 62773 67723 72673 77623*
450 63499 63949 64399
450 67829 68279 68729
9450 68713 78163 87613
2772 71947 74719 77491
5004 73589 78593 83597
450 76717 77167 77617
4950 76819 81769 86719
5238 78941 84179 89417
8910 80191 89101 98011
4950 83987 88937 93887 98837 (all primes)
4950 88937 93887 98837
4500 89387 93887 98387
450 92381 92831 93281
*the last term is not prime
Suscribirse a:
Entradas (Atom)