viernes, 18 de mayo de 2012

The final 30 digits of 99999, 359916012598740083996400089999, is prime in addition to having 9 copies of 9 and ending in 9999

lunes, 27 de febrero de 2012

Primes as sum of ascending powers in more than one way


Primes as a1 + b2 + c3 + d4 + e in more than one way:

139    
= 91 + 72 + 43 + 24 + 15
= 141 + 92 + 33 + 24 + 15 

179    
 = 81 + 52 + 43 + 34 + 15
= 141 + 112 + 33 + 24 + 15
= 171 + 92 + 43 + 24 + 15

239    
= 121 + 92 + 43 + 34 + 15  
= 131 + 72 + 43 + 34 + 25
 = 141 + 122 + 43 + 24 + 15
 = 161 + 92 + 53 + 24 + 15 

257
= 111 + 102 + 43 + 34 + 15
= 141 + 62 + 53 + 34 + 15 
= 151 + 102 + 53 + 24 + 15 
= 161 + 82 + 43 + 34 + 25 
= 171 + 142 + 33 + 24 + 15 

571    
= 141 + 122 + 53 + 44 + 25
= 151 + 102 + 73 + 34 + 25 
= 151 + 142 + 73 + 24 + 15 
= 171 + 92 + 63 + 44 + 15 
= 171 + 152 + 63 + 34 + 25 


Others primes as sum of powers (a1 + b2 + c3 + d4 +e5) in
more than one way :

139, 157, 179, 181, 191, 193, 197, 199, 211, 223, 227, 239, 241, 251, 257, 269, 271, 281,
283, 293, 307, 311, 313, 331, 349, 359, 367, 373, 389, 409, 419, 421, 431, 433, 439, 443,
449, 457, 461, 463, 479, 487, 499, 521, 541, 547, 563, 569, 571, 593, 599, 617, 641, 673,
677, 719, 727, 739, 757, 761, 809, 937, 953, 971, 1097, 1103, 1129, 1201, 1297, 1327,
1423, 1777, 1979, 1997, 1999.

jueves, 26 de enero de 2012

Products anagram


Since I was a kid, I have  always been amazed by the fact that when multiplying  four or seven by three, the two products obtained have the same digits but in a different position.
3 x 4 = 12
3 x 7 = 21

Now that I'm a little older, not much, it still surprises me that there are numbers that when they are multiplied by two different numbers, its products are a permutation of each other. Apparently you can find a number for each pair of distinct numbers provided that one of these numbers is not a multiple of ten of the other (ie for n and n * 10 ^ m, there is no number that when multiplied by a specific number, its products are not  anagrams).

Two years ago I published  8 sequences based on these facts in the OEIS. The title of each of these sequences is:  a(n) =smallest number such a(n)*n is an anagram of a(n)* X .

For example the sequence for X  equal to four is :
1782, 62937, 54, 1, 2826, 891, 3, 269, 631, 324, 2718, 4311, 3681, 37, 387, 25974, 4401, 477, 45, 48, 256437, 3393, 37, 26523, 3465, 3252, 3699, 34623, 2922, 27972, 27, 271, 284787, 27324, 25971, 263223, 26973, 25974, 2579247, 2514744     (OEIS A175693)

So:

1782   x 1 =      1782    and    1782 x 4 = 7218
62937 x 2 = 125874    and  62937 x 4 = 251748
54        x 3 =       162     and        54 x 4 = 216 
and so on.

Sometimes the same number meets the condition for example:
37 x 13 = 481, 37 x 22 = 814, 37 x 4 = 148

If we write these numbers in a table:

.
123456789
.
1112587410351782142857138613591139671089
.
21258741178262937543651757748919
.
3103517821543641958459345
.
417826293754128268913269631324
.
51428575436362826192792522439
.
613865175419588919169327594
.
71359774453279693131518
.
81139678919269631252273151297
.
9108993453242439594182971
.
.
389350202879452653384491541355073434873853905116


we can see that even though the values ​​are different, oddly enough, the sum of the values ​​of number one is an anagram to the sum of the values ​​of the number eight: 389350 - 385390